Copied to
clipboard

G = D5xC42order 160 = 25·5

Direct product of C42 and D5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5xC42, C20:8(C2xC4), (C4xC20):8C2, C5:2(C2xC42), Dic5:8(C2xC4), (C2xC4).95D10, (C4xDic5):17C2, D10.18(C2xC4), (C2xC10).12C23, C10.15(C22xC4), C22.9(C22xD5), (C2xC20).109C22, (C2xDic5).59C22, (C22xD5).41C22, C2.1(C2xC4xD5), (C2xC4xD5).19C2, SmallGroup(160,92)

Series: Derived Chief Lower central Upper central

C1C5 — D5xC42
C1C5C10C2xC10C22xD5C2xC4xD5 — D5xC42
C5 — D5xC42
C1C42

Generators and relations for D5xC42
 G = < a,b,c,d | a4=b4=c5=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 264 in 108 conjugacy classes, 69 normal (8 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2xC4, C2xC4, C23, D5, C10, C42, C42, C22xC4, Dic5, C20, D10, C2xC10, C2xC42, C4xD5, C2xDic5, C2xC20, C22xD5, C4xDic5, C4xC20, C2xC4xD5, D5xC42
Quotients: C1, C2, C4, C22, C2xC4, C23, D5, C42, C22xC4, D10, C2xC42, C4xD5, C22xD5, C2xC4xD5, D5xC42

Smallest permutation representation of D5xC42
On 80 points
Generators in S80
(1 49 9 44)(2 50 10 45)(3 46 6 41)(4 47 7 42)(5 48 8 43)(11 56 16 51)(12 57 17 52)(13 58 18 53)(14 59 19 54)(15 60 20 55)(21 66 26 61)(22 67 27 62)(23 68 28 63)(24 69 29 64)(25 70 30 65)(31 76 36 71)(32 77 37 72)(33 78 38 73)(34 79 39 74)(35 80 40 75)
(1 39 14 29)(2 40 15 30)(3 36 11 26)(4 37 12 27)(5 38 13 28)(6 31 16 21)(7 32 17 22)(8 33 18 23)(9 34 19 24)(10 35 20 25)(41 76 51 66)(42 77 52 67)(43 78 53 68)(44 79 54 69)(45 80 55 70)(46 71 56 61)(47 72 57 62)(48 73 58 63)(49 74 59 64)(50 75 60 65)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 18)(2 17)(3 16)(4 20)(5 19)(6 11)(7 15)(8 14)(9 13)(10 12)(21 36)(22 40)(23 39)(24 38)(25 37)(26 31)(27 35)(28 34)(29 33)(30 32)(41 56)(42 60)(43 59)(44 58)(45 57)(46 51)(47 55)(48 54)(49 53)(50 52)(61 76)(62 80)(63 79)(64 78)(65 77)(66 71)(67 75)(68 74)(69 73)(70 72)

G:=sub<Sym(80)| (1,49,9,44)(2,50,10,45)(3,46,6,41)(4,47,7,42)(5,48,8,43)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,39,14,29)(2,40,15,30)(3,36,11,26)(4,37,12,27)(5,38,13,28)(6,31,16,21)(7,32,17,22)(8,33,18,23)(9,34,19,24)(10,35,20,25)(41,76,51,66)(42,77,52,67)(43,78,53,68)(44,79,54,69)(45,80,55,70)(46,71,56,61)(47,72,57,62)(48,73,58,63)(49,74,59,64)(50,75,60,65), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,18)(2,17)(3,16)(4,20)(5,19)(6,11)(7,15)(8,14)(9,13)(10,12)(21,36)(22,40)(23,39)(24,38)(25,37)(26,31)(27,35)(28,34)(29,33)(30,32)(41,56)(42,60)(43,59)(44,58)(45,57)(46,51)(47,55)(48,54)(49,53)(50,52)(61,76)(62,80)(63,79)(64,78)(65,77)(66,71)(67,75)(68,74)(69,73)(70,72)>;

G:=Group( (1,49,9,44)(2,50,10,45)(3,46,6,41)(4,47,7,42)(5,48,8,43)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,39,14,29)(2,40,15,30)(3,36,11,26)(4,37,12,27)(5,38,13,28)(6,31,16,21)(7,32,17,22)(8,33,18,23)(9,34,19,24)(10,35,20,25)(41,76,51,66)(42,77,52,67)(43,78,53,68)(44,79,54,69)(45,80,55,70)(46,71,56,61)(47,72,57,62)(48,73,58,63)(49,74,59,64)(50,75,60,65), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,18)(2,17)(3,16)(4,20)(5,19)(6,11)(7,15)(8,14)(9,13)(10,12)(21,36)(22,40)(23,39)(24,38)(25,37)(26,31)(27,35)(28,34)(29,33)(30,32)(41,56)(42,60)(43,59)(44,58)(45,57)(46,51)(47,55)(48,54)(49,53)(50,52)(61,76)(62,80)(63,79)(64,78)(65,77)(66,71)(67,75)(68,74)(69,73)(70,72) );

G=PermutationGroup([[(1,49,9,44),(2,50,10,45),(3,46,6,41),(4,47,7,42),(5,48,8,43),(11,56,16,51),(12,57,17,52),(13,58,18,53),(14,59,19,54),(15,60,20,55),(21,66,26,61),(22,67,27,62),(23,68,28,63),(24,69,29,64),(25,70,30,65),(31,76,36,71),(32,77,37,72),(33,78,38,73),(34,79,39,74),(35,80,40,75)], [(1,39,14,29),(2,40,15,30),(3,36,11,26),(4,37,12,27),(5,38,13,28),(6,31,16,21),(7,32,17,22),(8,33,18,23),(9,34,19,24),(10,35,20,25),(41,76,51,66),(42,77,52,67),(43,78,53,68),(44,79,54,69),(45,80,55,70),(46,71,56,61),(47,72,57,62),(48,73,58,63),(49,74,59,64),(50,75,60,65)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,18),(2,17),(3,16),(4,20),(5,19),(6,11),(7,15),(8,14),(9,13),(10,12),(21,36),(22,40),(23,39),(24,38),(25,37),(26,31),(27,35),(28,34),(29,33),(30,32),(41,56),(42,60),(43,59),(44,58),(45,57),(46,51),(47,55),(48,54),(49,53),(50,52),(61,76),(62,80),(63,79),(64,78),(65,77),(66,71),(67,75),(68,74),(69,73),(70,72)]])

D5xC42 is a maximal subgroup of
C42:6F5  C42.282D10  C42.182D10  D10.6C42  C42.200D10  C42.202D10  C20:5M4(2)  C42.5F5  C42.6F5  C42.11F5  C42.12F5  C20:3M4(2)  C42.14F5  C42.15F5  C42.7F5  C42:4F5  C42:8F5  C42:9F5  C42:5F5  C42.188D10  C42.93D10  C42.228D10  C42.229D10  C42.232D10  C42.131D10  C42.233D10  C42.234D10  C42.236D10  C42.237D10  C42.189D10  C42.238D10  C42.240D10  C42.241D10
D5xC42 is a maximal quotient of
Dic5.15C42  Dic5:2C42  D10:2C42  D10.5C42  D10.6C42  D10.7C42

64 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4L4M···4X5A5B10A···10F20A···20X
order122222224···44···45510···1020···20
size111155551···15···5222···22···2

64 irreducible representations

dim11111222
type++++++
imageC1C2C2C2C4D5D10C4xD5
kernelD5xC42C4xDic5C4xC20C2xC4xD5C4xD5C42C2xC4C4
# reps1313242624

Matrix representation of D5xC42 in GL3(F41) generated by

900
010
001
,
100
090
009
,
100
061
0400
,
100
0040
0400
G:=sub<GL(3,GF(41))| [9,0,0,0,1,0,0,0,1],[1,0,0,0,9,0,0,0,9],[1,0,0,0,6,40,0,1,0],[1,0,0,0,0,40,0,40,0] >;

D5xC42 in GAP, Magma, Sage, TeX

D_5\times C_4^2
% in TeX

G:=Group("D5xC4^2");
// GroupNames label

G:=SmallGroup(160,92);
// by ID

G=gap.SmallGroup(160,92);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,50,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^5=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<